

UROLOGIC ONCOLOGY

Urologic Oncology: Seminars and Original Investigations 000 (2021) 1-11

Clinical-Bladder cancer Catalog of prognostic tissue-based biomarkers in patients treated with neoadjuvant systemic therapy for urothelial carcinoma of the bladder: a systematic review.

Ekaterina Laukhtina^{a,b}, Benjamin Pradere^{a,c}, Keiichiro Mori^{a,d}, Victor M. Schuettfort^{a,e}, Fahad Quhal^{a,f}, Hadi Mostafaei^{a,g}, Reza Sari Motlangh^{a,h}, Satoshi Katayama^{a,i}, Nico C. Grossmann^{a,j}, Marco Moschini^{k,l}, Dmitry Enikeev^b, Shahrokh F. Shariat, Prof.^{a,b,m,n,o,p,q,r,*}, European Association of Urology—Young Academic Urologists (EAU-AU): Urothelial carcinoma working group

^a Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria

^b Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia

^c Department of Urology, University Hospital of Tours, Tours, France

^d Department of Urology, The Jikei University School of Medicine, Tokyo, Japan

^e Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

^f Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia

^g Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

^h Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

¹Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

^j Department of Urology, University Hospital Zurich, Zurich, Switzerland

^k Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland

¹Department of Urology and Division of Experimental Oncology, Urological Research Institute, Vita-Salute San Raffaele

^m Department of Urology, Weill Cornell Medical College, New York, USA

ⁿDepartment of Urology, University of Texas Southwestern, Dallas, Texas, USA

° Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic

^pKarl Landsteiner Institute of Urology and Andrology, Vienna, Austria

^qDivision of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan

^rEuropean Association of Urology Research Foundation, Arnhem, Netherlands

Received 10 November 2020; received in revised form 14 December 2020; accepted 19 December 2020

Abstract

PURPOSE: The present systematic review aimed to identify prognostic values of tissue-based biomarkers in patients treated with neoadjuvant systemic therapy (NAST), including chemotherapy (NAC) and checkpoint inhibitors (NAI) for urothelial carcinoma of the bladder (UCB).

MATERIAL AND METHODS: The PubMed, Web of Science, and Scopus databases were searched in August 2020 according to the PRISMA statement. Studies were deemed eligible if they compared oncologic or pathologic outcomes in patients treated with NAST for UCB with and without detected pretreatment tissue-based biomarkers.

RESULTS: Overall, 44 studies met our eligibility criteria. Twenty-three studies used immunohistochemistry (IHC), 19 – gene expression analysis, three - quantitative polymerase chain reaction (QT PCR), and two – next-generation sequencing (NGS). According to the currently available literature, predictive IHC-assessed biomarkers, such as receptor tyrosine kinases and DNA repair pathway alterations, do not seem to convincingly improve our prediction of pathologic response and oncologic outcomes after NAC. Luminal and basal tumor sub-types based on gene expression analysis showed better NAC response, while claudin-low and luminal-infiltrated tumor subtypes did not. In terms of NAI, PD-L1 seems to maintain value as a predictive biomarker, while the utility of both tumor mutational burden and molecular subtypes remains controversial. Specific genomic alterations in DNA repair genes have been shown to provide significant predictive value

*Corresponding Author. Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. Tel.: +4314040026150;

fax: +4314040023320 E-mail address: shahrokh.shariat@meduniwien.ac.at (S.F. Shariat).

https://doi.org/10.1016/j.urolonc.2020.12.019 1078-1439/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

E. Laukhtina et al. / Urologic Oncology: Seminars and Original Investigations 00 (2021) 1-11

in patient treated with NAC. QT PCR quantification of specific genes selected through microarray analysis seems to classify cases regarding their NAC response.

CONCLUSION: We believe that the present systematic review may offer a robust framework that will enable the testing and validation of predictive biomarkers in future prospective clinical trials. NGS has expanded the discovery of molecular markers that are reflective of the mechanisms of the NAST response. © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords: Biomarkers; UCB; bladder cancer; Neoadjuvant systemic therapy; NAC; systematic review

1. Introduction

Urothelial carcinoma of the bladder (UCB) is one of the most frequently diagnosed and harmful cancers worldwide [1]. Neoadjuvant cisplatin based combination chemotherapy (NAC) prior to radical cystectomy is the preferred first treatment in cisplatin eligible patients with muscle-invasive UCB [2, 3]. However, multiple reasons impeded the widespread uptake of NAC such as the fear of unnecessary chemotoxicity, its perceived relatively modest survival benefit, and/or the fear of a delay to radical treatment [4, 5]. Moreover, UCB is a highly heterogeneous disease with varied response rates when therapies are given in unselected patient populations. Identification of the patients who are unlikely to respond to NAC could allow better selection of patients to immediate radical cystectomy or allocation of different systemic therapies such as checkpoint inhibitors (CPI).

Modern medical decisions can be tailored to the individual patient based on predicted response or risk of disease. Understanding the molecular basis of disease has ushered in a new age of precision medicine. Molecular markers are promising tools that may give insight into which UCB patients will or will not benefit from neoadjuvant systemic therapy (NAST) and which have the potential to overcome the limitations of conventionally used prognostic risk factors. In addition, a biomarker-based strategy to identify patients who should undergo NAC is more cost-effective compared to the current unselected use of NAC or radical cystectomy alone [6]. Numerous publications provided data on potential molecular markers associated with NAC response in UCB patients; however, none is yet validated or widely used in the clinical practice [7-9].

In this systematic review we aimed to summarize the available evidence as well as to determine whether pretreatment tissue-based biomarkers may help predict oncologic and pathologic outcomes in patients treated with NAST for UCB. This review is a benchmark for future developments.

2. Evidence acquisition

2.1. Literature search

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [10]. This study's protocol was registered a priori on the International Prospective Register of Systematic Reviews (PROSPERO; Registration ID CRD42020208417).

The PubMed, Web of Science, and Scopus databases were searched in August 2020 to identify studies reporting on the prognostic value of tissue-based biomarkers in patients treated with NAST for UCB. A comprehensive systematic literature search was independently performed by two authors. The keywords used in our search strategy included: (NAC OR neoadjuvant) AND (bladder OR urothelial) AND (cancer OR tumor OR malignancy OR carcinoma) AND (biomarker). In addition, we manually searched for potentially relevant trials from the references of selected studies. The primary outcome of interest was both oncologic and pathologic outcomes in patients treated with NAST for UCB.

After removing duplicates, two independent reviewers screened the titles and abstracts. Any citation which either reviewer thought should be included or unclear for inclusion was identified for full text screening. Subsequently, reviewers reviewed full texts of eligible articles for final inclusion and data extraction. In cases of disagreement, the authors consulted with the co-authors, and final decisions were reached by consensus.

2.2. Inclusion and exclusion criteria

We included all non-randomized observational studies that reported on the prognostic value of tissue-based biomarkers in UCB.

The PICO in this study was the following: patients treated for UCB with detected pretreatment tissue-based biomarkers. Intervention included NAST for UCB. Control group included those patients without pretreatment tissuebased biomarkers. The outcome included any measure of association between oncologic and pathologic outcomes and the candidate biomarker, the diagnostic performance of the biomarker.

We excluded reviews, letters, editorials, animal studies, study protocols, case reports, meeting abstracts, replies from authors, brief correspondence, and articles not published in English. Furthermore, we excluded the studies

that did not provide data regarding the oncologic or pathologic outcomes. References of all papers included were scanned for additional studies of interest.

2.3. Data extraction

Data extracted from each study were independently extracted by two independent reviewers. Extracted data included the following: first author's name, publication year, study design, demographics characteristics including age range, sample size, pathological T stage, follow-up duration, NAC regime, definition of response, type of biomarkers, methods of biomarkers detection, % of patients with high expression, and Main results. Subsequently, the hazard ratios (HR) and 95% confidence intervals (CI) of tissue-based biomarkers associated with each outcome were retrieved.

2.4. Evidence synthesis

The literature search identified 624 unique references. Among them, 233 records were removed due to duplication, and 261 articles were excluded due to unrelated outcomes during the screening process (Figure 1). Of the 130 full-text articles assessed for eligibility, 86 were excluded based on the selection criteria.

Overall, 44 studies were finally included in the present systematic review. Characteristics of the studies are shown in Table 1. Fifteen of the included studies had a prospective study design, and twenty-nine were retrospective.

3. Immunohistochemistry (IHC)

Twenty-three studies provided data on the pretreatment biomarkers detected at IHC.

Figure 1. Flow diagram of the study selection procedure for the systematic review.

Table 1
Characteristics of included studies reporting biomarker predictive models of response to neoadjuvant systemic therapy in patients with bladder cancer.

Author, publication year	Study design	Number of NAC patients	Age, years (median, range)	Stage	Follow-up, median (range)	NAC	Definition of response	Type of markers evaluated(cut off values)	Methods	% of high expression (%)	Main results
Bandini, 2020 [27]	Р	112	66 (IQR 61-73)	T2-T4, N0	NR	Pembrolizumab	pT0N0	TMB (11 mut/Mb)	CGP	TMB (12.5)	TMB was not associated with NAC response on multivariable analysis (OR 1.04, 0.98-1.10, n=0 (09)
Baras, 2015 [42]	R	37	63 (44-83)	T2-T4	NR	GC	<ypt2< td=""><td>mRNAs (10%), Ki67 = 52 CDDD2 = = 4 SDDED1</td><td>IHC</td><td>NR</td><td>The combination of GDPD3 and SPRED1 predicted</td></ypt2<>	mRNAs (10%), Ki67 = 52 CDDD2 = = 4 SDDED1	IHC	NR	The combination of GDPD3 and SPRED1 predicted
Baras, 2016 [43]	R	41	64 (45-82)	T2-T4, N0/N+	NR	NR	<ypt2< td=""><td>PD-L1, CD8, FOXP3, the ratio of</td><td>IHC</td><td>NR</td><td>The ratio of CD8/FOXP3 TIL densities was strongly</td></ypt2<>	PD-L1, CD8, FOXP3, the ratio of	IHC	NR	The ratio of CD8/FOXP3 TIL densities was strongly
Choi, 2014 [23]	R	18	NR	T2-T4, N0/N+, M0/+	NR	Platinum-based	<pt1< td=""><td>CD8/FOXP3 Molecular subtypes: basal-like,</td><td>Whole genome mRNA</td><td>basal (22), luminal</td><td>associated with response (p=0.0003) Response was 0% in p53-like, 40% - basal-like and</td></pt1<>	CD8/FOXP3 Molecular subtypes: basal-like,	Whole genome mRNA	basal (22), luminal	associated with response (p=0.0003) Response was 0% in p53-like, 40% - basal-like and
Choueiri, 2014 [16]	Р	31	NR	T2-T4, N0-1, M0	2 years	ddMVAC	<pt1< td=""><td>luminal- like and p53-like ERCC1 (H score>0.1)</td><td>expression profiling IHC</td><td>(25), p53-like (27) ERCC1 (39)</td><td>67% - luminal-like subtypes (p=0.018) 43% of ERCC1-positive and 60% of ERCC1- pagative patients achieved PR</td></pt1<>	luminal- like and p53-like ERCC1 (H score>0.1)	expression profiling IHC	(25), p53-like (27) ERCC1 (39)	67% - luminal-like subtypes (p=0.018) 43% of ERCC1-positive and 60% of ERCC1- pagative patients achieved PR
de Jong, 2019 [44]	R	223	62 (56-71)	T2-4, N0-3, M0	NR	NR	NR	IncRNA (LC1, LC2, LC3, LC4 clusters) and mRNA subtypes (luminal-papillary, luminal, luminal- infiltrated, basal squamous and neuronal)	Gene expression analysis	FGFR3+ (16%)	The luminal-papillary IncRNA cluster (LC3) tumors had favorable prognosis and had enhanced FGFR3, SHH, and wild-type p53 pathway activity.
Efstathiou, 2019 [24]	R	223	61.7	T2-T4, N0, M0	3.5 year (IQR 2.1 - 5.0)	NR	NR	Molecular subtypes: luminal, luminal- infiltrated, basal, claudin-low	Transcriptome-wide gene expression profiles	NR	DSS and OS were worse among patients with claudin-low tumors (p=0.01 and p=0.068, respectively). A stromal signature was associated with worse DSS and OS (n=0.006 and n=0.015 respectively)
Font, 2011 [33]	R	57	64 (41-80)	T2-T4, N0/+, M0/+	45 mo (14–190)	GC, CMV	pT0-1	BRCA1 (>26.77)	RT-PCR	BRCA1 (32)	60% of patients with low/intermediate BRCA1 levels atteined PR vs 22% of those with high levels (p=0.01). Median OS was 168 mo in patients with low/ intermediate levels and 34 mo in patients with high BRCA1 laws(i C = 0.002)
Garcia del Muro, 2004 [18]	R	82	61 (30-74)	T2-T4, N0, M0	55 mo	MVAC, CMV, CbMV + radiotherapy	≤TI	p53 (20%), p21 (20%), pRB (10%)	IHC	p53 (47), p21 (52), pRB (67)	 Positive p53 and p21 were independently associated with decreased survival with bladder preservation (both p<0.02). DFS: positive p53 and p21 were independently associated with decreased DFS (p<0.005 and p<0.009, respectively). OS: p53 overexpression was associated with poor OS (p<0.03). The positive expression of combination p53 and p21 was a strong and unfavorable prognostic factor for survival with bladder preservation (p<0.006), DFS (r<0.02), and DS (r<0.02).
Groenendijk, 2016 [36]	Р	94	NR	NR	NR	GC, GCb, MVAC	ypT0N0	178 cancer- associated genes	NGS	NR	ERBB2 mutations are strongly associated with response (p=0.006), whereas ERCC2 mutations
Grossman, 2006 [12]	Ρ	94	64 (39-80)	T2-T4a, N0, M0	NR	MVAC	NR	Ki67 (1000 cells), p53 (20%), angiogenesis	IHC	NR	are not. Ki67 expression was not associated with PFS (HR 0.62; 95% CI 0.37-1.03; p=0.063) and OS (HR 0.74; 95% CI 0.44-1.24; p=0.25). p53 expression was not associated with worse PFS (HR=1.02; 95% CI 0.61-1.71; p=0.93) and OS (HR 1.48; 95% CI 0.87-2.53; p=0.15). Angiogenesis was not associated with PFS (HR 1.0; 95% CI 0.62-1.64; p=0.99) and OS (HR1.04; 95% CI 0.63-1.70; p=0.89).
Hemdan, 2015 [19]	R	125	66	T1G3, T2-T4, Nx, M0	NR	Cisplatin/ methotrexate or doxorubicin + radiotherapy	pT0 or Ta/CIS	Emmprin and survivin	IHC	Emmprin (28), surviving (50)	OS: negative emprin expression had significantly greater OS (71% vs 38%, p <0.001). CSS: in negative and positive emmprin expression was 76% vs 56% (n=0.027)
Hemdan, 2018 [45]	R	177	NR	T1G3, T2-T4, Nx, M0	NR	Cisplatin/ methotrexate	pT0 or Ta/CIS	CCT- <i>a</i> (20%)	IHC	CCT-α (24)	Improved OS with NAC treatment only in the CCT- α-negative group (p=0.006). No difference was found in the CCT-α-positive group (n=0.9)
Hensley, 2019 [46]	R	69	NR	T2	NR	MVAC, GC	ypT0N0	E-cadherin (125), N-cadherin (34.7), b-catenin (125), vimentin (50.3),	IHC	NR	Extravesical disease showed increased N-cadherin (p= 0.004), increased vimentin (p=0.028), increased b-catenin (p= 0.019), decreased P-cofilin

E. Laukhtina et al. / Urologic Oncology: Seminars and Original Investigations 00 (2021) 1-11

(continued on next page)

Table 1 (Continued)

T Methods % of high expression Main results (%)	 (P = 0.036), increased a-tubulin (p=0.007) ePR: low N-cadherin (p=0.044), low vimentir (p=0.013), low P-cofilin (p=0.037), and lov (p=0.0130) expression. Better CSS: low N-cadherin expression (p=0.045), hish TUNEI. (n=0.003). 	Genome-wide expression NR 12 genes separated responders (9 patients) fro profiling, PT-PCR and SLC22A18 were up-regulated in non-	TR-1 (43) High conducts TR-1 (43) High CTR-1 expression score correlated wi pre-NAC and past NAC specimens (p=0.0 pre-NAC specimens (p=0.0 pre-N	IHC and FISH Her2 (19), ERBB2 None of the Her2 alterations were related to F	art DNA ecome sequencing TP3 (8%), KMT2D Genetic alterations in (28%), CMK72D Genetic alterations in (28%), CMK7A genes associated with cell cycle checkpoints ((23%), ARD1A regulators (EFF3, (22%), and RB1 ((25%), and RB1 (((20%) (20%) Mutations in ATM, RB1, or FANCC were	significantly associated with improved OS (p=0.043) and DSS (p=0.0015). The 5-yr survival nates were also higher for bk (85%, 95% CI 04-4-04.95%, s46%, 95% – 61.7%) and DSS (90%, 95% CI 64.8–9' 49%, 95% CI 31.6–64.9%) in patients with	CGP PD-L1 CPS (67) TMB and CPS were associated with both the J	CGP NR The molecular subtypes were not significantly	ed, associated with response (all p>0.2). The Immue 199 signature was significant for = 0.02.1 in PURE-01, but not in the NAC c. = 0.7). Hallmark signatures for EINY(pr or and IFNar response (p= 0.006) were also	associated with cPR for PURE-01, but not NAC (IFNy: p=0.9 and IFNor: p = 0.8).	IHC Smail (34.1) DPS was gapfificantly shorter for the Smail-pc group (p=0.014). DSS was significantly shorter for the Smail-pc group (p=0.034). In mitivariae analysis, correstion locat use identified are an index.	expression revet was normarized as an integration of the DSS ($p = 0.020$).	IHC DYRK2 (47.7) Sensitivity and specificity of DYRK2 express terms of complete response were 62.5 % at	%, respectively (p=0.0018), %, respectively (p=0.0018), DSS was significantly higher for DYRK2-pos nations (n=0.017).	%, respectively (p=0.0018). DSS was significantly higher for DYRK2-pos putients (p=0.017). NR MDSC (34.8) Tumor MDSC subypes we not significantly associated with response.	%, respectively (p=0.0018). RS BSS was genificantly higher for DYRR2-pose proteints (p=0.017). NR MDSC (34.8) Tumor MDSC and/bypes were not significantly associated with response. IHC (LN) NR	with the second seco	MR MSC (34.8) NR MDSC (34.8) NR MDSC (34.8) NR MDSC (34.8) Tunor MDSC subtypes were not significantly access in OS were noted and access in OS were noted and access in OS were noted attended and the access in OS were noted attended and and access in OS were noted attended and the access in OS were noted attended atte
Type of markers evaluated(cut off values)	α-tubulin (181), cofilin (214), P. cofilin (223), Zeb-I (82.8), TUNEL (1.82)	Numerical prediction scoring system including 12 genes	CTR-1	Her2 (10%), ERBB2 gene	Cell-cycle and immune checkpoint regulation genes	DNA damage repair genes		PD-L1 CPS (≥10), TMB	Molecular subtypes: basal	squamous, luminal nonspecified luminal papillary, luminal unstable, stroma-rich, and NE- like. TMB, PD-L1 CPS (≥10), IFNy, IFNe.		Shail (H-score > 10)		DYRK2		MDSC	MDSC CD15 (105 cells/hpf), psTAT3 CD15 (105 cells/hpf), psTAT3 T1 -17 (8 cells/hpf)	MDSC CD15 (105 cells/hpf), pSTAT3 (254 cells/hpf), (124 cells/hpf) IL-17 (8 cells/hpf) TMB (2 10 mu/Mb), chromosomal aberrations, CD3, CD8, PD-LI, FoxP3, Cytokerntin, Molecular subtypes: luminal, basal.	MDSC CD15 (105 cells/hpf), pSTAT3 CD15 (105 cells/hpf), CJ3 cells/hpf) IL-17 (8 cells/hpf) TVB (2 10 mu/Mb), chromosomal aberrations CD3, CD8, PD-L1, FoxP3, CD3, CD8, CD8, CD8, CD8, CD8, CD8, CD8, CD8
Definition of response		NR	≤pT1	<ypt2n0< td=""><td>≤pT1</td><td>TONOMO</td><td></td><td>pT0</td><td>ypT0N0</td><td></td><td></td><td>NR</td><td></td><td>pT0 or Ta/CIS</td><td></td><td>oNOTq</td><td>pT0N0 NR</td><td>pT0N0 NR YPŪ-T1N0</td><td>pTONO NR ypT0-T1NO</td></ypt2n0<>	≤pT1	TONOMO		pT0	ypT0N0			NR		pT0 or Ta/CIS		oNOTq	pT0N0 NR	pT0N0 NR YPŪ-T1N0	pTONO NR ypT0-T1NO
NAC		GCb	GC, MVAC, GCb, Cis/ Etoposide, or Carbo/ Etonoside	GC	GC, MVAC	GC, MVAC		Pembrolizumab	NR	Pembrolizumab		Cisplatin/methotrexate/ doxorubicin		Cisplatin/ methotrexate/ doxorubicin		GC, GCb, MVAC, or others	GC, GCb, MVAC, or others GC, MVAC	GC, GCb, MVAC, or others GC, MVAC GC	GC, GCb, MVAC, or others GC, MVAC GC
Follow-up, median (range)		NR	NR	NR	NR	74 mo		13.2 mo	8 mo (IQR: 5	– 13.5 mo) 18.4 mo (IQR 12 – 22.4 mo)		47 mo		47 mo		NR	NR 38 mo	NR 38 mo 8 mo (6 - 89	NR 38 mo 8 mo (6 - 89
Stage		T2-T4, N0, M0	T2-T4, N0-1, M0	NR	NK	T2-4, N0-1, M0		T2-T4, N0, M0	T2-T4, N0, M0	T2-T4, N0, M0		T1G3, T2N0M0		TIG3, T2N0M0		T0-T4, N0/N+, M0	T0-T4, N0/N+, M0 T0-T4, N0/N+, M0	T0-T4, N0N4, M0 T0-T4, N0N4, M0 T0-T4, N0-N3, M0	T0-T4, N0/N4, M0 T0-T4, N0/N4, M0 T0-T4, N0-N3, M0
Age, years (median, range)		67 (52-78)	68 (42-81)	NR	NR	65 (44-83)		66 (60-71)	62 (54-70)	68 (62–74)		70 (43-84)		70 (43-84)		68 (44-87)	68 (44–87) 65 (36–76)	68 (44–87) 65 (36–76) 66.5 (48-76)	68 (44–87) 65 (36–76) 66.5 (48-76)
Number of NAC patients		37	4	127	101	58		114	140 (NAC)	84 (PURE-01)		4		4		36	36 38	33 36 38	3 % %
Study design		۵.	ы	К	~	Ь		Ч	К			х		2	Ч		м	22 22	~ ~
Author, publication year		Kato, 2010 [34]	Kilari, 2016 [47]	Kiss, 2017 [17]	Liu, 2017 [32]	Miron, 2019 [37]		Necchi, 2020 [26]	Necchi, 2020 [25]			Nomura, 2013 [48]		Nomura, 2015 [49]	Omstein, 2018 [50]		Pal, 2016 [51]	Pal, 2016 [51] Pichler, 2019 [52]	Pal, 2016 [51] Pichler, 2019 [52]

ARTICLE IN PRESS

E. Laukhtina et al. / Urologic Oncology: Seminars and Original Investigations 00 (2021) 1-11

5

Table 1 (Continued)

Author, publication year	Study design	Number of NAC patients	Age, years (median, range)	Stage	Follow-up, median (range)	NAC	Definition of response	Type of markers evaluated(cut off values)	Methods	% of high expression (%)	Main results
Plimack, 2015 [30]	م	ह ह	64 (44–83) 68 (55–82)	T2-4, N0-1, M0	28.3 mo 16.75 mo	MV AC Dose dense GC	pT0, pN0, cM0	38.7 cuncer-related genes	DNA sequencing (Illumina)	NR	In the discovery set, ATM, RB1, and FANCC alterations predicted PR (p<0.001; 87% set invity, 100% specificity) and better OS (p = 0.007), In the validation set ATM, RB1, and FANCC alterations project PR (p = 0.033), with a trend alterations project of PR (p = 0.033).
Powles, 2019 [28]	٩.	95	73 (68–77)	T2-T4, N0, M0	13.1 mo	Atezolizumab	NR	CD8+ T, TMB (≥10 mut/Mb), TGF.β, PD-L1	IHC, RNA and DNA sequencing (Illumina)	TMB (31), PD-L1 (41)	The number of the contrast of
Rubino, 2020 [13]	2	130	65 (33–84)	ž	NR	MVAC, ddMVAC, and other	X	Ki-67 and PD-LJ	НС	Ki-67 (81.6), PD-Ll (43.8)	Possible EAC expression was associated with poor Possible EAC expression was associated with poor OS (HR 2.412, 95% CL 1.076–5.408), the associated (p =0.001) and tumor downstaging (p =0.001). Positive PD-L1 was associated with lack of ePR response (OR = 0.16, 95% CL 0.05–0.59; Postive PD-L1 was associated with lack of ePR response (OR = 0.16, 95% CL 0.05–0.59; Sec. CT 0.12–0.757–m0.003)
Sarkis, 1995 [11]	к	Ξ	64 (30-79)	T2-T4, NO, MO	5.8 years	MVAC	≤pTI	p53 (20%)	НС	p53 (52)	p53 overcypression had independent significance for survival (p=0.001; relative risk ratio, 3.1). Long-tern survival was evident in 41% of patients with p53 overcypression vs. 77% - with no overvrorsesion vd. 0010.
Seiler, 2017 [21]	ы	269	61	T2-T4, N0-3, M0	NR	GC, MVAC, and other	ypT<2N0	Molecular subtypes: luminal, luminal-infiltrated, basal, claudin-low. and p53-like	Whole transcriptome analysis	NR	Claudin-low (HR 2.16, 95% CI 1.22–3.81, p=0.008) and luminal-infiltrated (HR 2.46, 95% CI 1.29 –4.7. p=0.006) subbroes were associated with OS.
Seiler, 2018 [22]	2	134	61	N	35.4 mo	Platinum-based	pTONO	Molecular subtypes: luminal, luminal-infitrated, basal, claudin-low.	Whole transcript analysis, IHC	X	Basal or luminar tumors pla a favorable prognosis compared to cladin-low or luminal- infiltrated umors (p<0.05). Higher expression of genes that were consistent with wound healing/scarring (MYH11, CNN1, DES) or with epithelia-low messnotymal transition (EMT is . ZEB1, ZEB2, VIA), suggesting these patients had response to therapy.
Takata, 2005 [53]	4	72	66 (53-77)	T2a-3b, N0, M0	NR	MVAC	NR	Numerical prediction scoring system including 14 genes	Genome- wide expression profiling	NR	14 gene separated the responders from non-responder group. Among these genes Topoisomerase 2, was downregulated in non-responder group. The secring system correctly identified response for 8 of 9 cases.
Takata, 2007 [54]	Ч	13	66.7 (58–75)	T2a-3b, N0, M0		MVAC	NR	Numerical prediction scoring system including 14 genes	Genome- wide expression mofiling	NR	The scoring system correctly identified response for 19 of 22 cases.
Tervahartiala, 2017 [55]	۲	8	65 (47-76)	T0-T4, N0N+, M0	3.6 year (0.25 -7.7)	ac, ac	pT 0N 0	CD68 (60), MAC387 (79), CLEVER-1 (54)	нс		MAC387+ exits (HR 3.76, 95% CI 1.10–12.82, p=0.034) and CLEVER-14 (HR 2.78, 95% CI 1.00 –7.67, p=0.019 macrophages associated with por NAC response, while CLEVER-14 vessels associated with more favorable response to NAC (p = 0.01). (p = 0.01). Sci higher counts of CLEVER +1 macrophages associated with poorer OS (HR 3.17, 95% CI 1.01 –9.97, p0.048).
Turker, 2019 [20]	К	119	NR	T1G3 or T2-T4, N0/N+, M0	NR	Cisplatin/doxorubicin or methortexate + radiotherapy	NR	Bcl-2 (10%)	IHC	Bcl-2 (38)	Bcl-2 negative expression had a significant increased OS (p=0.009), while Bcl-2 positive -showed no difference (p=0,4).
Van Allen, 2014 [31]	d	50	62.5±8.9	T2-T4, N0/N+, M0	351 ± 363.2 days (主 SD)	GC, ddMVAC, ddGC, or GC and sunitinib	pT0 or pTis	ERCC2	WES	NR	ERCC2 was the only significantly mutated gene enriched in the cisplatin responders compared with non-responders (p-0.01).
Vinall, 2016 [35]	۵.	4	NR	≥ p12	N	Genscitabine, carboplatin/ cisplatin, taxol	pT0	kt-7c	MiRNA expression profiling. RT-PCR	NK	Higher let-7c expression had higher odds of responding (OR 2.493, 95% CT 1.121-5.546, pe0.0023). Let-7c levels allowed for prediction of patient response (AUC 0.72, positive predictive value 50%).
Wahlin, 2019 [14]	К	65		T2-T4, N0/N+, M0-1		NR	pT0 or Ta/CIS		IHC		(continued on next page)

ARTICLE IN PRESS

E. Laukhtina et al. / Urologic Oncology: Seminars and Original Investigations 00 (2021) 1-11

6

Table 1 (Continued)

	<i>E. I</i>	aukht	ina e	t al.	/Urc	olo	gic	On	rrs and Original Investigations 00 (2021) 1–11
	D-1, PD- (htthe (5); (5);	ole gene 8% for those	pression	sociated	∕ altered in ₹R3	in patients	od nith DD	ALL NUMBER	3.1. Cell-cycle and proliferation m
	D20, Pl ated wi sis: =0.26); =0.71); 0.89); p=0.9(; p=0.9(;	vourab % vs 33	03) exj onders.	us is as	usively ch FGF	iched i	toiooo	ssociat	Several studies in patients un
	P3, C associ associ analy -2.04, -2.04, -2.04, -2.04, -2.04, -2.28, -1-2.28, -1-2.28	with fa as 81 ^c	t (p=0 e resp	on stat	A excl in whi	tly em	0.000	was a	strated a correlation between pret
	8, Foy were (05) 10.08 10.08 0.05-1 0.05-1 0.05-1 (10-1, % 0.1] % 0.1]	ients '	m TOR	hylati 0.001	IK3C.	nifican	0.01).	L.	marker) overexpression at IHC a
	of CD -L1 ^{TC} -L1 ^{TC} and h 5% C 95% (95% 0 51, 95' 51, 95'	for pat odel se trable	and pi d in cc	er met	s (p<(re sigı	se (p=	a 10 ll	comes. For example, Sarkis et al
ts	ration TTR oporti- 0.41, 9 0.41, 9 0.41, 0.41, 4 HR 0.5 HR 0.5 HR 0.5	rs OS 1 ion m	=0.01) Ereased	romote	GFR3 onder	ons we	respon	()	after NAC, 41% of patients with
n resul	n infilt lic, a ongest ongest (HR ongest (HR P3 (HR)	3-year xpress vith un	DR (p= vas det	KA9 p vith re	BB2, F he rest	nutatic	vith a 1	p=0.0]	77% - without overexpression (p=
Mai	High 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e e	, Tm	ЮН	ERE	-	A CHO		[11]. In contrast, Grossman et al
u.	сс. 10)								expression was not associated wit
pressic	FoxP3 220(5(PD-L1) .1)								(HR=1.02; 95% CI 0.61-1.71; p=0
igh ex	43.8), 5), CI 5), CI 44.2), T ^C (48								vival (HR 1.48; 95% CI 0.87-2.53
% of h (%)	CD8 (< (49 (49 (49 (49 PD-L1	NR	NR	NR	NR				67 (proliferation marker) express
		- >	-	-	-				neither PFS (HR 0.62; 95% CI 0.3
		ties	uo	DNA					(HR 0.74; 95% CI 0.44-1.24; p=
		nsitivil nd mic	pressio	g and					study comprising 130 patients, Rul
		tion at	us NA ex is	lation					positive K1-67 expression was as
thods		ritro di evalua	c, mRl c, mRl analys	A sequences of the second seco					(HR 2.412, 95% CI, 1.076–5.408)
Mei		Ч, с.	H	RN	H				complete pathological response (p-
off	0				_: 0			ć	staging (p<0.001). Interestingly, p
ed(cut	, CD2				BRCA C1, A	:2/6.	nes	o, ITSC	clated with a lack of complete $(OP = 0.16, 0.5\%)$ CL 0.05 0.50, m
valuat	3 (4%)	nodels	ci67	nes	HLI, ERC	nd Ck	ted ge	82 and	(OR = 0.10; 95% CI, 0.05-0.59; p)
kers e	FoxP: PD-1 %),	sion n	for, f	ted ge	41, PD ERCC	×3β1 ε	ssocia	ERB	staging ($OR = 0.29$, 95% CI, 0.13 patients treated with NAC [13] Hi
of mar ()	20%), 75%), 1 ^{IC} (0	expres	2, pm]	ır- rela	t, RRN JBB3,	egrin e	ncer-a	K3CA	tumor was shown to be associated
Type	(6. CD8 ((6. CD	Gene	mTOI	Cance	EGFR TU	int	Six ca	E	recurrence (all < 0.05) [14]
5									
ition of ase					9				3.2. DNA repair pathway alteration
Defini respor		NK	ypT0	pT0	ypT0				
			ler						A study assessing DNA repair r
			C, oth						that a strong expression of ERC
			√NMb						pathological response in patients
			AC, d						gemcitabine and cisplatin (GC) (p
₽C		VAC	C, MV	n	n				al. [16] reported a pathological
Ż		М	ō	ō	ö				43% in ERCC1-positive and 60
ige)	ġ		2R 8						UCB patients treated with dose der
w-up, an (rar	7.9)		mo (IC						
Follo media	4.3 yc -	NR	36.51	ЯK	NR				3.3. Receptor tyrosine kinases
			7						Yang et al. [15] reported that
			I+, MC		£				(ERBB2, FGFR3, and PIK3CA)
			N/0N	+/0N	+N/0N				altered in the responders $(p<0.01)$
Stage		NK	T2-4	T2-4,	T0-4,				ponders; FGFR3 mutations were
ge)									patients with a response to GC ba
ears n, ranj	(6.5		_	(LL-					contrast, Kiss et al. [1/] failed to
Age, y	54.7 43.1-7	Ř	51.5 56-69	11 (60-	52.6				between ERBB2 alterations and be
''s	• •	-	• •		C				$(\langle yp12N0 \rangle)$ or US.
er of patient									2.4 Discussion for some line time
Numb NAC J		8	62	18	52				3.4. Biomarkers for combination of
dr l ug			-						Three studies reported IUC
Stuc		К	R	К	К				treated with combination of NAA
_									-[20] Positive p53 and p21 were
ication		09 [56	8 [57]	6 [58]	15]				with decreased disease free surviv
, publ.		ms, 20	s, 201	s, 201.	2018				tive study of 82 nations (n<0.00
Author 'ear		Willia	Winter	Xylina	Yang,				tively): additionally n53 overex
~ ~		-	-						a.erg), additionarily, p55 overex

3.1. Cell-cycle and proliferation markers

Several studies in patients undergoing NAC demonstrated a correlation between pretreatment p53 (cell-cycle marker) overexpression at IHC and worse survival outcomes. For example, Sarkis et al. found that at 5.8 years after NAC, 41% of patients with p53 overexpression and 77% - without overexpression (p=0.007) experienced death [11]. In contrast, Grossman et al. [12] reported that p53 expression was not associated with progression free (PFS) (HR=1.02; 95% CI 0.61-1.71; p=0.93) or overall (OS) survival (HR 1.48; 95% CI 0.87-2.53; p=0.15). Similarly, Ki-67 (proliferation marker) expression was associated with neither PFS (HR 0.62; 95% CI 0.37-1.03; p=0.063) nor OS (HR 0.74; 95% CI 0.44-1.24; p=0.25). Conversely, in a study comprising 130 patients, Rubino et al. [13] found that positive Ki-67 expression was associated with worse OS (HR 2.412, 95% CI, 1.076-5.408) as well as the absence of complete pathological response (p<0.001) and tumor downstaging (p<0.001). Interestingly, positive PD-L1 was associated with a lack of complete pathological response (OR = 0.16; 95% CI, 0.05-0.59; p=0.006) and tumor downstaging (OR = 0.29; 95% CI, 0.13-0.67; p=0.003) in 130 patients treated with NAC [13]. High infiltration of PD-1 in tumor was shown to be associated with the longest time to recurrence (all<0.05) [14].

3.2. DNA repair pathway alterations

A study assessing DNA repair pathway alterations found that a strong expression of ERCC1 was associated with pathological response in patients treated with neoadjuvant gemcitabine and cisplatin (GC) (p=0.01) [15]. Choueiri et al. [16] reported a pathological response (<pT1) rate of 43% in ERCC1-positive and 60% in ERCC1- negative UCB patients treated with dose dense MVAC.

3.3. Receptor tyrosine kinases

Yang et al. [15] reported that receptor tyrosine kinases (ERBB2, FGFR3, and PIK3CA) were more commonly altered in the responders (p < 0.01) compared to the non-responders; FGFR3 mutations were significantly enriched in patients with a response to GC based regimen (p=0.01). In contrast, Kiss et al. [17] failed to report on the association between ERBB2 alterations and both pathological response (<ypT2N0) or OS.

3.4. Biomarkers for combination of NAC and radiotherapy

Three studies reported IHC biomarkers in patients treated with combination of NAC and radiotherapy [18] -[20]. Positive p53 and p21 were independently associated with decreased disease free survival (DFS) in a retrospective study of 82 patients (p<0.005 and p<0.009, respectively); additionally, p53 overexpression was associated with poor OS (p<0.03) [18]. Alteration of the combination of p53 and p21 was a strong and unfavorable prognostic factor for both DFS (p<0.003) and OS (p<0.02). Hemdan et al. [19] demonstrated that patients with negative emmprin (extracellular matrix metalloproteinase inducer) expression had significantly greater OS in 125 UCB patients treated with radiotherapy and NAC (71% vs. 38%, p <0.001); cancer specific survival (CSS) in patients with negative and positive emmprin expression was 76% and 56%, respectively (p=0.027). Turker et al. [20] reported that patients exhibiting Bcl-2 negative expression had a significantly increased OS (p=0.009). In summary, pretreatment p53, p21, emmprin, and Bcl-2 have been suggested to exhibit predictive value in UCB patients treated with NAC and radiotherapy. However, further studies are needed to improve our understanding of the radiotherapy impact on inflammation status, which could affect biomarker expression.

According to the currently available literature, IHC biomarkers, including receptor tyrosine kinases and DNA repair pathway alterations, do not seem to clearly improve our prediction of pathological response or oncologic outcomes in UCB patients treated with NAC.

4. Gene expression and genomic DNA analyses

Nineteen studies provided data on the pretreatment biomarkers detected using gene expression analysis.

Over the last decade, molecular subtyping has led to distinct or partially overlapping molecular classifications of UCB. The arising molecular subtypes based on these classifications have been shown to be clinically useful in predicting the likelihood of therapy response. Whole transcriptome analysis suggests that luminal and basal tumors, compared to claudin-low or luminal-infiltrated tumors, might have the best response to platinum-based NAC (p<0.05) [21, 22]. Supporting this data, Choi et al. [23] reported response rate of 0% in p53-like, 40% - basal-like, and 67% - luminal-like subtypes (p=0.018). Efstathiou et al. [24] detected worse DSS and OS among patients with claudin-low tumors at transcriptome-wide gene expression profile analysis (p=0.01 and p=0.068, respectively). Taking together, luminal and basal tumor subtypes showed better NAC response, while claudin-low and luminal-infiltrated tumor subtypes did not.

Surprisingly, during comprehensive genomic profiling, molecular subtypes were not significantly associated with response (ypT0N0) in both studies assessing NAC and Pembrolizumab (all p>0.2) [25]. Notably, immune signatures explored in this study had a significant association with the pathologic response in the PURE-01 cohort (all p<0.02), but not in the NAC cohort (p>0.7) [25]. Among other studies on predictive biomarkers for neoadjuvant immunotherapy, Necchi et al. [26] reported an association of tumor mutational burden (TMB) and PD-L1 combined positive score with both the pT0 and the pT1 response to Pembrolizumab (all p<0.03). In contrast, Bandini et al. [27] found that TMB was not associated with response (pT0N0) to Pembrolizumab on multivariable analysis (OR 1.04, 0.98-1.10, p=0.09). These results were supported by Powles et al. [28] in a study of 95 patients treated with neoadjuvant Atezolizumab. Summing up, in terms of neoadjuvant immune-checkpoint inhibitors (CPI), PD-L1 seems to maintain value as a predictive biomarker, while the utility of TMB and molecular subtypes is still controversial.

Among other predictive biomarkers detected with gene expression analysis, Plimack et al. analyzed molecular alterations in baseline tumor samples and did not find a correlation between p53 deleterious mutations and response to NAC [29]. Defects in DNA repair genes (ATM, RB1, and FANCC) were shown to predict pathological response in both MVAC (p<0.001) and dose dense GC (p=0.033) cohorts and at the same time with better OS after MVAC (p=0.007) [30]. Another DNA repair pathway alteration (ERCC2) was also significantly mutated in cisplatin responders compared to non-responders (p<0.01) [31]. In contrast, genetic alterations in genes associated with cell cycle checkpoints and regulators (E2F3, JUN, FBXW7) suggested potential resistance [32].

Summing up, according to the currently available literature, alterations in DNA repair genes seem useful to predict pathological response and even oncologic outcomes in UCB patients treated with NAC. However, these data should be supported by future large-scale trials.

5. Polymerase chain reaction (PCR)

Three studies provided data on the pretreatment biomarkers detected at quantitative PCR [33]–[35].

In order to investigate the predictive role of the breast cancer susceptibility gene 1 (BRCA1) mRNA expression in UCB, tumor samples of 57 patients treated with GC or CMV (cisplatin, methotrexate, vinblastine) for UCB were retrospectively analyzed using quantitative PCR [33]. 66% of patients with low/intermediate BRCA1 levels attained a pathological response (pT0-1) compared to 22% of those with high BRCA1 levels. Furthermore, median survival was longer in patients with low BRCA1 expression (168 and 34 months, respectively, p=0.002). Thus, BRCA1 expression could be a useful tool for selecting UCB patients who are likely to benefit from cisplatin-based NAC. The authors suggested that taxane-based therapy for patients with high BRCA1 expression could be explored in further studies.

Among studies on other tissue-based biomarkers detected with PCR, Kato et al. [34] identified 12 candidates genes tested in tissue microarrays derived from baseline biopsies of 37 patients treated with NAC. Among these genes, IPO-7 and SLC22A18 were upregulated in non-responders. Vinall et al. [35] found that higher let-7c expression had higher odds of responding (OR 2.493, 95% CI 1.121-5.546, p=0.023), and let-7c levels allowed predicting

response (pT0) with an accuracy of 72%. Nevertheless, larger scale studies are certainly warranted to confirm and validate these results.

In general, quantitative PCR results for the expression of genes selected through microarray analysis might correctly classify cases with regard to their NAC response.

6. Next-generation sequencing (NGS)

Two studies provided data on the pretreatment biomarkers detected at NGS [36, 37].

In a study of Groenendijk et al. [36], ERBB2 was strongly associated with NAC response, defined as ypT0N0 (p=0.006), whereas ERCC2 mutations were not. Miron et al. [37] found that mutations in ATM, RB1, or FANCC were significantly associated with improved OS (p=0.0043) and DSS (p=0.0015) in 58 patients treated with NAC (GC or MVAC). The authors hypothesized that, based on understanding the function of ATM, RB1, and FANCC and their involvement in DNA damage repair, mutations in these genes sensitize tumors to cisplatin because of a baseline deficiency in DNA repair.

7. Discussion

This review on the impact of using pretreatment tissuebased biomarkers to select patients who are most likely to benefit from NAST generated several important findings.

First of all, there is no clear benefit of using predictive biomarkers, including receptor tyrosine kinases and DNA repair pathway alterations, detected at IHC to predict pathologic response or oncologic outcomes in UCB patients treated with NAC. The controversial results can be explained by the small sample size as well as the retrospective nature of most included studies, leading to heterogeneity between NAST cohorts, differences between NAC settings, and definitions such as that of pathologic response as well as non-standardized sample collections and arbitrary cut-offs during assay analysis. Moreover, we believe that for the initial development of a putative marker model as well as markers with combinations, it is essential to reflect the molecular understanding of the tumor and its microenvironment.

We found out that specific genomic alterations in DNA repair genes (e.g., ATM, RB1, FANCC, and ERCC2) provide predictive value for predicting pathologic response and oncologic outcomes after NAC. Quantitative PCR results for the expression of genes selected through microarray analysis (e.g., BRCA1) could correctly classify cases with regard to their NAC response. However, it should be stressed that the utility of genetic profiling has historically been limited to small gene panels and costly molecular diagnostics. Hence, biomarkers detected at IHC can still be a simple and less expensive alternative. To facilitate inclusion into routine urological practice, precise identification of tissue-based biomarkers with accurate detection technology seems to be of necessity. The continuous improvement in high throughput technologies, the development of novel analytical tools based on artificial intelligence need for biomarker-driven preclinical and clinical trials. Nowadays, NGS is becoming a complementary diagnostic tool, guiding the decision-making progress with the goal of facilitating precision medicine. We believe that with the incorporation of NGS, physicians will have the ability to obtain a more comprehensive understanding of the molecular alterations driving an individual urothelial cancer [38].

In terms of predicting the likelihood of responding to neoadjuvant CPI, TURBT PD-L1 seems to have value as an accurate but not ideal biomarker [39]. Indeed, a higher pathologic response rate was shown in patients with PD-L1 positive tumors compared to those with PD- L1 negative tumors; while the utility of TMB or molecular subtypes in patients treated with neoadjuvant CPI is still unclear, at best. Moreover, it was recently shown that indicate molecular subtypes may not be useful due to tumor heterogeneity and various models of changes in molecular profiles before or during progression [40, 41]. Understanding the stability of molecular subtypes over time and the subtype heterogeneity within tumors and patients remains challenging. Future areas certainly include conceptual molecular pathways (e.g., FGFR3 pathway) that would allow for targeted therapy approaches. New clinical trials that use molecularly guided therapy selection will determine the clinical efficacy of the integration of genomics and other molecular predictive biomarkers to guide daily therapeutic decision-making.

Our systematic review is not free from limitations. First, the inconsistencies in evaluation of the tissue-based biomarkers among the enrolled trials could lead to potential confounding and bias. The second limitation is the retrospective and heterogeneous nature of most included studies which also suffered from single-center designs. Third, the small cohort size of most of the included studies may have limited their power to detect a statistically and/or clinically significant associations. Therefore, well-designed comparative trials with larger cohorts are required to validate some of the most promising findings inherent to the present systematic review.

8. Conclusions

Pretreatment tissue-based biomarkers still hold promise in selecting the ideal UCB patient who is most likely to benefit from NAST. However, due to the lack of prospective, well-designed, large scale data, no molecular biomarkers could be recommended for the routine use. The present systematic review offers a robust framework to enable the testing and validation of predictive biomarkers in future prospective clinical trials.

ETHICAL STANDARDS

Not applicable.

E. Laukhtina et al. / Urologic Oncology: Seminars and Original Investigations 00 (2021) 1-11

Declaration of Competing Interest

None

ACKNOWLEDGEMENTS

Ekaterina Laukhtina and Victor M. Schuettfort are supported by the EUSP Scholarship of the European Association of Urology (EAU). Nico C. Grossmann is supported by the Zurich Cancer League.

References

- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA. Cancer J. Clin. 2019. https://doi.org/10.3322/caac.21551.
- [2] Witjes JA, et al. EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Edn. presented at the EAU Annual Congress Amsterdam. EAU Guidelines Office 2020:2020.
- [3] Witjes JA, et al. EAU-ESMO Consensus Statements on the Management of Advanced and Variant Bladder Cancer—An International Collaborative Multistakeholder Effort†[Formula presented]: Under the Auspices of the EAU-ESMO Guidelines Committees. Eur. Urol., 2020. https://doi.org/10.1016/j.eururo.2019.09.035.
- [4] Rosenblatt R, et al. Pathologic downstaging is a surrogate marker for efficacy and increased survival following neoadjuvant chemotherapy and radical cystectomy for muscle-invasive urothelial bladder cancer. Eur. Urol. 2012. https://doi.org/10.1016/j.eururo.2011.12.010.
- [5] Eulitt PJ, Bjurlin MA, Milowsky MI. Perioperative systemic therapy for bladder cancer. Current Opinion in Urology 2019. https://doi.org/ 10.1097/MOU.00000000000600.
- [6] Lotan Y, Woldu SL, Sanli O, Black P, Milowsky MI. Modelling costeffectiveness of a biomarker-based approach to neoadjuvant chemotherapy for muscle-invasive bladder cancer. BJU Int 2018. https:// doi.org/10.1111/bju.14220.
- [7] Buttigliero C, Tucci M, Vignani F, Scagliotti GV, Di Maio M. Molecular biomarkers to predict response to neoadjuvant chemotherapy for bladder cancer. Cancer Treatment Reviews 2017. https://doi.org/ 10.1016/j.ctrv.2017.01.002.
- [8] Tse J, Ghandour R, Singla N, Lotan Y. Molecular predictors of complete response following neoadjuvant chemotherapy in urothelial carcinoma of the bladder and upper tracts. International Journal of Molecular Sciences 2019. https://doi.org/10.3390/ijms20040793.
- [9] Ilijazi D, Abufaraj M, Hassler MR, Ertl IE, D'Andrea D, Shariat SF. Waiting in the wings: the emerging role of molecular biomarkers in bladder cancer. Expert Review of Molecular Diagnostics 2018. https://doi.org/10.1080/14737159.2018.1453808.
- [10] Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine 2009. https:// doi.org/10.1371/journal.pmed.1000100.
- [11] Sarkis AS, et al. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol. 1995. https://doi.org/10.1200/JCO.1995.13.6.1384.
- [12] Grossman HB, et al. Evaluation of Ki67, p53 and angiogenesis in patients enrolled in a randomized study of neoadjuvant chemotherapy with or without cystectomy: A Southwest Oncology Group study. Oncol Rep 2006;16(4):807–10.
- [13] Rubino S, et al. Positive Ki-67 and PD-L1 expression in post-neoadjuvant chemotherapy muscle-invasive bladder cancer is associated with shorter overall survival: a retrospective study. World J. Urol. Jul. 2020. https://doi.org/10.1007/s00345-020-03342-5.
- [14] Wahlin S, Nodin B, Leandersson K, Boman K, Jirström K. Clinical impact of T cells, B cells and the PD-1/PD-L1 pathway in muscle

invasive bladder cancer: a comparative study of transurethral resection and cystectomy specimens. Oncoimmunology 2019;8(11). https://doi.org/10.1080/2162402X.2019.1644108.

- [15] Yang Z, et al. Somatic FGFR3 Mutations Distinguish a Subgroup of Muscle-Invasive Bladder Cancers with Response to Neoadjuvant Chemotherapy. EBioMedicine 2018;35:198–203. https://doi.org/ 10.1016/j.ebiom.2018.06.011.
- [16] Choueiri TK, et al. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscleinvasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32 (18):1889–94. https://doi.org/10.1200/JCO.2013.52.4785:Jun.
- [17] Kiss B, et al. Her2 alterations in muscle-invasive bladder cancer: Patient selection beyond protein expression for targeted therapy. Sci. Rep. 2017;7:42713.. https://doi.org/10.1038/srep42713:Feb.
- [18] Garcia del Muro X, et al. p53 and p21 Expression levels predict organ preservation and survival in invasive bladder carcinoma treated with a combined-modality approach. Cancer 2004;100(9):1859–67. https://doi.org/10.1002/cncr.20200:May.
- [19] Hemdan T, Malmström P-U, Jahnson S, Segersten U. Emmprin Expression Predicts Response and Survival following Cisplatin Containing Chemotherapy for Bladder Cancer: A Validation Study. J. Urol. 2015;194(6):1575–81. https://doi.org/10.1016/j.juro.2015.06.085:Dec.
- [20] Turker P, Segersten U, Malmström P-U, Hemdan T. Is Bcl-2 a predictive marker of neoadjuvant chemotherapy response in patients with urothelial bladder cancer undergoing radical cystectomy?," Scand. J. Urol. 2019;53(1):45–50. https://doi.org/10.1080/21681805.2019.1575467: Feb.
- [21] Seiler R, et al. Impact of Molecular Subtypes in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy. Eur. Urol. 2017;72(4):544–54. https://doi.org/ 10.1016/j.eururo.2017.03.030:Oct.
- [22] Seiler R, et al. Divergent Biological Response to Neoadjuvant Chemotherapy in Muscle-invasive Bladder Cancer. Clin. cancer Res. an Off. J. Am. Assoc. Cancer Res. 2019;25(16):5082–93. https://doi. org/10.1158/1078-0432.CCR-18-1106:Aug.
- [23] Choi W, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014;25(2):152–65. https://doi.org/ 10.1016/j.ccr.2014.01.009:Feb.
- [24] Efstathiou JA, et al. Impact of Immune and Stromal Infiltration on Outcomes Following Bladder-Sparing Trimodality Therapy for Muscle-Invasive Bladder Cancer(Figure presented. Eur. Urol. 2019;76 (1):59–68. https://doi.org/10.1016/j.eururo.2019.01.011.
- [25] Necchi A, et al. Impact of Molecular Subtyping and Immune Infiltration on Pathological Response and Outcome Following Neoadjuvant Pembrolizumab in Muscle-invasive Bladder Cancer[Formula presented]. Eur. Urol. 2020;77(6):701–10. https://doi.org/10.1016/j.eururo.2020.02.028.
- [26] Necchi A, et al. Updated Results of PURE-01 with Preliminary Activity of Neoadjuvant Pembrolizumab in Patients with Muscle-invasive Bladder Carcinoma with Variant Histologies. Eur. Urol. 2020;77(4):439–46. https://doi.org/10.1016/j.eururo.2019.10.026:Apr.
- [27] Bandini M, et al. Predicting the pathologic complete response after neoadjuvant pembrolizumab in muscle-invasive bladder cancer. J. Natl. Cancer Inst. 2020. https://doi.org/10.1093/jnci/djaa076:Jun.
- [28] Powles T, et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat Med 2019;25(11):1706–14. https://doi.org/10.1038/s41591-019-0628-7.
- [29] Plimack ER, et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32(18):1895–901. https://doi.org/10.1200/JCO.2013.53.2465:Jun.

10

E. Laukhtina et al. / Urologic Oncology: Seminars and Original Investigations 00 (2021) 1-11

- [30] Plimack ER, et al. Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer. Eur. Urol. 2015;68(6):959–67. https://doi.org/ 10.1016/j.eururo.2015.07.009:Dec.
- [31] Van Allen EM, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov 2014. https://doi.org/10.1158/2159-8290.CD-14-0623.
- [32] Liu D, et al. Mutational patterns in chemotherapy resistant muscleinvasive bladder cancer. Nat. Commun. 2017;8(1):2193.. https://doi. org/10.1038/s41467-017-02320-7:Dec.
- [33] Font A, et al. BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann. Oncol. 2011. https://doi.org/10.1093/annonc/mdq333.
- [34] Kato Y, et al. Predicting response of bladder cancers to gemcitabine and carboplatin neoadjuvant chemotherapy through genome-wide gene expression profiling. Exp. Ther. Med. 2011. https://doi.org/ 10.3892/etm.2010.166.
- [35] Vinall RL, et al. Decreased expression of let-7c is associated with non-response of muscle-invasive bladder cancer patients to neoadjuvant chemotherapy. Genes Cancer 2016;7(3-4):86–97. https://doi. org/10.18632/genesandcancer.103:Mar.
- [36] Groenendijk FH, et al. ERBB2 Mutations Characterize a Subgroup of Muscle-invasive Bladder Cancers with Excellent Response to Neoadjuvant Chemotherapy. Eur. Urol. 2016;69(3):384–8. https://doi.org/ 10.1016/j.eururo.2015.01.014:Mar.
- [37] Miron B, et al. Defects in DNA Repair Genes Confer Improved Long-term Survival after Cisplatin-based Neoadjuvant Chemotherapy for Muscle-invasive Bladder Cancer. Eur. Urol. Oncol. 2020. https://doi.org/10.1016/j.euo.2020.02.003:Mar.
- [38] Hassler MR, et al. Molecular Characterization of Upper Tract Urothelial Carcinoma in the Era of Next-generation Sequencing: A Systematic Review of the Current Literature. European Urology 2020. https://doi.org/10.1016/j.eururo.2020.05.039.
- [39] Bensalah K, Montorsi F, Shariat SF. Challenges of Cancer Biomarker Profiling. Eur. Urol. 2007. https://doi.org/10.1016/j.eururo.2007.09.036.
- [40] Morera DS, et al. Clinical Parameters Outperform Molecular Subtypes for Predicting Outcome in Bladder Cancer: Results from Multiple Cohorts, Including TCGA. J. Urol. 2020. https://doi.org/10.1097/ JU.0000000000000351.
- [41] Sjödahl G, et al. Molecular changes during progression from nonmuscle invasive to advanced urothelial carcinoma. Int. J. Cancer 2020. https://doi.org/10.1002/ijc.32737.
- [42] Baras AS, et al. Identification and Validation of Protein Biomarkers of Response to Neoadjuvant Platinum Chemotherapy in Muscle Invasive Urothelial Carcinoma. PLoS One 2015;10(7):e0131245. https:// doi.org/10.1371/journal.pone.0131245.
- [43] Baras AS, et al. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology 2016;5(5):e1134412. https://doi.org/ 10.1080/2162402X.2015.1134412:May.
- [44] De Jong JJ, et al. Long non-coding RNAs identify a subset of luminal muscle-invasive bladder cancer patients with favorable prognosis. Genome Med 2019;11(1). https://doi.org/10.1186/s13073-019-0669-z.

- [45] Hemdan T, Turker P, Malmström P-U, Segersten U. Choline-phosphate cytidylyltransferase-α as a possible predictor of survival and response to cisplatin neoadjuvant chemotherapy in urothelial cancer of the bladder. Scand. J. Urol. 2018;52(3):200–5. https://doi.org/ 10.1080/21681805.2018.1439527:Jun.
- [46] Hensley PJ, et al. Predictive value of phenotypic signatures of bladder cancer response to cisplatin-based neoadjuvant chemotherapy. Urol. Oncol. 2019;37(9). https://doi.org/10.1016/j.urolonc.2019.06.020:572. e1-572.e11Sep.
- [47] Kilari D, et al. Copper Transporter-CTR1 Expression and Pathological Outcomes in Platinum-treated Muscle-invasive Bladder Cancer Patients. Anticancer Res 2016;36(2):495–501:Feb..
- [48] Nomura S, et al. Snail expression and outcome in T1 high-grade and T2 bladder cancer: a retrospective immunohistochemical analysis. BMC Urol 2013;13:73.. https://doi.org/10.1186/1471-2490-13-73:Dec.
- [49] Nomura S, et al. Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) as a novel marker in T1 high-grade and T2 bladder cancer patients receiving neoadjuvant chemotherapy. BMC Urol 2015;15:53.. https://doi.org/10.1186/s12894-015-0040-7:Jun.
- [50] Ornstein MC, et al. Myeloid-derived suppressors cells (MDSC) correlate with clinicopathologic factors and pathologic complete response (pCR) in patients with urothelial carcinoma (UC) undergoing cystectomy. Urol. Oncol. 2018;36(9):405–12. https://doi.org/10.1016/j.urolonc.2018.02.018:Sep.
- [51] Pal SK, et al. Prognostic Significance of Neutrophilic Infiltration in Benign Lymph Nodes in Patients with Muscle-invasive Bladder Cancer. Eur. Urol. Focus 2017;3(1):130–5. https://doi.org/10.1016/j. euf.2016.03.003:Feb.
- [52] Pichler R, et al. Amplification of 7p12 Is Associated with Pathologic Nonresponse to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer. Am. J. Pathol. 2020;190(2):442–52. https://doi.org/ 10.1016/j.ajpath.2019.10.018:Feb.
- [53] Takata R, et al. Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin. Cancer Res. 2005. https://doi.org/10.1158/1078-0432.CCR-04-1988.
- [54] Takata R, et al. Validation study of the prediction system for clinical response of M-VAC neoadjuvant chemotherapy. Cancer Sci 2007. https://doi.org/10.1111/j.1349-7006.2006.00366.x.
- [55] Tervahartiala M, et al. Immunological tumor status may predict response to neoadjuvant chemotherapy and outcome after radical cystectomy in bladder cancer. Sci. Rep. 2017;7(1). https://doi.org/ 10.1038/s41598-017-12892-5.
- [56] Williams PD, et al. Concordant gene expression signatures predict clinical outcomes of cancer patients undergoing systemic therapy. Cancer Res 2009. https://doi.org/10.1158/0008-5472.CAN-09-0798.
- [57] Winters BR, et al. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy. Urol. Oncol. Semin. Orig. Investig. 2018;36(7). https://doi.org/10.1016/j.urolonc.2018.03.016:342.e7-342. e14.
- [58] Xylinas E, et al. An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer. Biomolecules 2016;6(3). https://doi.org/10.3390/biom6030037:Sep.